Better prediction of overheating in new homes
A detailed study of three modern, energy-efficient flats has been carried out to improve the means of predicting indoor temperatures and the risk of overheating, when designing multi-residential buildings.
Overheating in modern homes – which are often designed with a focus on improving energy efficiency – is a growing problem and likely to be exacerbated by climate change. To counter this, it is important when designing buildings to reliably assess indoor temperatures and the potential for overheating. These are typically predicted with dynamic simulations, using Building Performance Simulation (BPS) tools.
BPS tools need accurate data on a complex range of issues in the areas of climate, site context, building fabric, building services and occupant behaviour. All of these bring high levels of uncertainty that make correctly predicting indoor temperature very difficult, and can lead to a gap between the expected and actual performance.
A BRE Trust supported PhD project has been conducted by Kostas Mourkos at Loughborough University, to improve BPS tools’ reliability when predicting overheating risks in homes in multi-residential buildings. This was achieved by studying in detail three modern energy-efficient flats located in London. The flats are representative of many high-density developments built in London in recent years.
Areas of overheating assessments that have been revealed as needing improvement by the analysis include:
- Specifying input values for parameters, such as the ventilation rates of mechanical ventilation systems.
- Providing guidance on handling the thermal interaction between communal spaces and the assessed flat.
- Examining different infiltration and exfiltration pathways.
The analysis also identified the key parameters influencing the observed gap between predicted and monitored indoor air temperature. While demonstrating how such a gap can be efficiently bridged through Bayesian calibration, this research showed that predicting overheating accurately remains challenging.
The research recommended that an overheating assessment should incorporate sources of uncertainty (such as occupant behaviour), by providing a range of values – instead of a single value – of the desired Building Performance Indicator (BPI). It should also consider using less sensitive overheating metrics.
Kostas was supervised by Prof Christina Hopfe and Dr Rob McLeod at Graz University of Technology, Dr Chris Goodier at Loughborough University, and Dr Mick Swainson at BRE. For more information contact Kostas ([email protected]) or access the paper.
[edit] Related articles on Designing Buildings Wiki
- BRE articles.
- BRE Trust.
- Building Research Establishment.
- Heat stress.
- Home Quality Mark high temperature reporting tool.
- Human comfort in buildings.
- Overheating - assessment protocol.
- Overheating in residential properties.
- Overheating.
- Preventing overheating.
- Solar gain.
- Thermal comfort.
- Thermal indices.
- Thermal pleasure in the built environment.
Featured articles and news
A briefing on fall protection systems for designers
A legal requirement and an ethical must.
CIOB Ireland launches manifesto for 2024 General Election
A vision for a sustainable, high-quality built environment that benefits all members of society.
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.